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Abstract

An analysis of a double-paraboloidal mirror system, known as the "clam

shell" device, is presented. It is evident from laboratory observations that the
system produces real images which can be measured in both direction and dis-

tance. The derived system equation is

1 1 4 cos 2 a/2-3 cos 4 a/2
v u f

where u and v are the object and image distances, respectively, a, the angle

of obliquity of the incident light, and f, the focal length of the mirrors.
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Analysis of a Double-Paraboloidal Mirror System

1. INTRODUCTION

The "clam shell," 1 as an optical device, consists of two paraboloidal mir-
rors mounted face to face in such a manner that the vertex of one mirror falls
at the focal point of the other and vice versa. If a parameter, called the aper-

ture ratio, is defined as the rim diameter divided by the focal length, then,
owing to the geometry of the parabola, any two paraboloidal mirrors of aperture
ratio equal tolr will satisfy the necessary conditions for a "clam shell" arrange-
ment. The field of view for this optical system is limited to twice the arc-tangent

IT or 14103.

The inherent aberrations of the images formed by the system prompted an
investigation of the geometrical optics of this device. The development of analy-
sis proceeded by considering a cross section containing the axis of the system
and any arbitrary object point so that only the angle of obliquity of the incident
light need be considered.

Received for publication 25 April 1963.
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2. DISCUSSION

The system equation for the "clam shell" has been derived by considering

the parabolic cross section to be approximated by circles. Each of these circles

has a radius equal to the radius of curvature of the parabola at the particular

point being considered. The general equation for the radius of curvature, rc,

of the parabola, derived in Appendix 1, is rc = 2f sec3 a/ 2 where a is the polar

coordinate angle and f, the focal length.
Each point Pi on the parabola has a given radius of curvature for each a.

At each point Pi, the spherical mirror formula for axial or paraxial incident

light may be used. The well-known spherical mirror formula is

u1 + vr-
+ v -r 

1

where u and v are the object and image distances, respectively, and r the radius.
For a spherical mirror, r is fixed but for a parabolic mirror r = 2f sec3cV2,
and therefore, along the parabola, there will be a different equation for each

Consider the point P1 shown in Figure i. Along the normal to the parabola
at P 1 lies the center of curvature, Cc$ and the radius of curvature, rc.

Fu1PARABOLA a roNORM AL-, . F /4TAN GENT

- Jr ~r, .C P,

Figure 1. Parabola
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The spherical mirror formula can be used for the portion of the parabolic
mirror about P1 as long as the incident light is axial (along the normal to point

P,), or not too far distant paraxially (parallel to the normal to P 1 ).

If the incident light falls obliquely on P1 making an angle i with the normal
and is reflected at an angle r=i, then the image produced will have the abbera-

tion called astigmatism. Astigmatism is the aberration of an optical system

where two mutually perpendicular image positions are formed for a given object

position,
The plane containing the chief ray and the axis, called the vertical plane,

as shown in Figure 2 forms an image at the tangential image position, T, while

the image at the sagittal image position, S, is formed by the plane, perpendicu-

lar to the vertical plane, containing the chief ray and intersecting the axis at
an angle a. 2

F AXIS

Figure 2. Astgmatic 
Image Formation 

by Oblique Rays
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In the plane MVNQ, the reflected light converges along the chief ray to a
point at T, while in the plane OVPQ, the convergence is at S. The plane MVNQ

contains the axis and therefore is the plane in which the tangential image posi-
tion appears. The sagittal image position lies in the plane OVPQ, perpendicu-

lar to the plane MVNQ. An image is said to appear in a given plane if the light

converges to a point in that plane. The images between S and T vary from
straight lines to ellipses including a circle, called the circle o1 least confusion,
where the major and minor axes of the ellipse are equal. When the foci of the

sagittal and tangential image positions coincide there is no astigmatism.
The equations for the astigmatic image positions are deiived in Appendix

2 for a spherical mirror: 3

I + 1 2 (2)
Ul Vn r cos i

11 2cosi (3)
Ul vi 5  r

where u, is the object dstance, vlt and vls are the tangential and sagittal image
positions, respectively, measured along the chief ray; i is the angle of obliquity

of the chief ray with the axis, and r is the radius of the sphere.
These two equations hold for any point PI for a given angle i. If the restric-

tion is held that I = a/2, then, from the geometry of the parabola the incident

light is constrained to pass through the focal point F and reflected parallel to
the optical axis. The angle of the normal with respect to the axis will always

be a/2.
The restriction of allowing the incident light to enter the system only at the

focal point has a direct relationship to the "clam shell" device where the aper-

tures to the optical system are at the focal points of the mirrors.

The astigmatic image equations have been derived for spherical mirrors

of radius r, but, in this application the mirrors are paraboloidal, parabolic in

two dimensions and circular in the other. Consider the pictorial representation

in Figure 3.3

The vertical planes API"V, AK'K"V, etc., form the tangential image. Note

that these planes section the mirror in parabolas. The planes APK', Ar'K",
etc., form the sagittal image focus but the sections are circular. Therefore

there will be a difference between the radius of curvature rt for the tangential

focus and the radius of curvature rs for the sagittal focus in connection with a
paraboloidal mirror.
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PARABOLOID

~TANGENTIAL FOCUS

Figure 3. Astigmatic Image Formation in Paraboloid

The normal at any point on the paraboloid will contain both the tangential

and sagittal radii of curvature. For the tangential radius, it can easily be seen

that

rt = 2f sec 3 a/2 (4)

Since the sagittal sections are circular, their centers of curvature must be at
the intersections of the normals to the parabola and the axis. It is shown in Ap-
pendix 3 that

r. = 2f sec a/2 (5)

The astigmatic image equations will therefore reduce to

1 1 2 1 (6)
uI Vlt rt cos a/2 f sec 2 V2
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and

1 +1 2 cosa/2 1 (7)
u l "is r. f sec2 - 2

The astigmatic image positions are equal under the restriction that the incident
light pass through the focal point of one of the mirrors, as it does in the "clam
shell" arrangement and thus there is no astigmatism presented by the system.
The reflected light is parallel to the optical axis, becoming the incident light
for a reflection at the second mirror.

The analysis regarding the sagittal and tangential image positions may also
be applied to this second reflection with the same result that no astigmatism is

introduced into the optical system. In this case, since the incident light is paral-
lel to the axis, the reflected light will pass through the focal point of the second
mirror.

The object distance u 2 for the second mirror will be equal to the image dis-

tance vI of the first reflection minus the horizontal distance d between the rnir-
rors at the point of incidence. Since the image position of the first reflection
falls behind the face of the second mirror, the object distance u2 for the second
mirror will be negative. It is shown in Appendix 4 that

d= f [sec a+ (8)

and also that the total distance that the light travels from focal point to focal point

inside the system is 3f.
The equations necessary for the second reflection are:

1 1 12
u2  v2 f sec2 a/2 (9)

u 2 = - (v - d). (10)

It is therefore possible to solve the equations of both reflections to obtain v2 in

terms of u.
In applying the mirror equations to the "clam shell" arrangement, two con-

veniences are introduced to permit an easier evaluation of the final equation:
(1) the distance u to the object is measured from the focal point of the first re-

flecting surface and (2) the final image position v is measured irom the focal
point of the second reflecting surface towards that surface.



7

As a consequence of these conveniences, the changes in the mirror equations
and the derivation of the system equation proceed as shown in Figure 4.

2 nd REFLECTING It REFLECTING
SURFACE-, SURFACE

0- -AXIS

IMAG

Figure 4. "Clam Shell" - Geometrical Cross Section

The position equations are:

1 1 1
Ul v1  f sec2 (/12

1 1 1
- -+ 1 1 (12)
u 2  v2  f se a/2

1U + 3+--= u+ p (13)

u 2 = -(v l -d) (14)
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S - v2 = P - V2 (15)

Combining the five equations and solving for v in terms of Ul, one observes that
the final system equation, completed in Appendix 5, is

1 1 4 cos 2  2 - 3 cos 4 cV2
v u f

As a detection device, the "clam shell" arrangement can readily yield an

unknown object distance and direction once the image position and angle are meas-

ured. The orly aberrations in the arrangement are astigmatism and curvature

of field. In deriving the system equation, the effect of astigmatism has been over-
come by permitting the txident lght to enter the system only at the focal point

of one of the mirrors. In practice, a pinhole aperture at the focal points is not
realizable and as a result of an opening at the focal points an astigmatic image

is produced. In detecting such an image, however, the position of least confusion
represents the best image, which is relatively easy to locate. Astigmatism,

therefore, depends upon-the aperture of the system; its effects may be minimized
by an appropriate opening.

Curvature of field is the aberration of an image whereby an object locus which
is a straight line perpendicular to the axis results in an image locus which Is

curved. When astigmatism is present, the image locus will follow the position
of the circle of least confusion, but, even for an assumed pinhole aperture In the
"clam shell", curvature of field is apparent. To illustrate this effect, consider
Figure 5 which is a plot of the angle of obliquity versus the image distance for

object points lying on a straight line perpendicular to the axis. The calculated
data for this figure appear In Table A of Appendix 6. From Figure 5, the effects
of both angle and object distance upon image position and hence curvature of field

can easily be seen. The ideal image positions are shown by the dashed lines.
Knowledge of curvature of field is useful for photographic plates which must be
fitted to the locus when used to focus a sharply defined image.

To investigate the effect of the angle of obliquity upon the image position with

the object distance held constant, consider the curves of Figure 6. The calcu-

lated data for this figure appear in Table B of Appendix 6. These curves show
how a spherical object or source is imaged by the "clam shell." Knowledge of

this phenomenon is useful in describing the aberrations of an image as applied
to thermal Imaging techniques.
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3. CONCLUSIONS

The optical system described in this report is capable of being used as a

detection and range-finding device in accordance with the system equation. While

no specific utilization of the "clam shell" as such a device is known, the possi-

bility of such an application is not remote. Presently, the "clam shell" is used

as a display device and as a thermal imaging device.
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Appendix 1
RADIUS OF CURVATURE OF PARABOLA

The equation of a parabola in Cartesian and polar coordinates may be repre-

sented by

y2 = 4fx+ 4f2 = 2px+ p 2

and

I
p = 2f(1+ cos co- , respectively.

In Cartesian coordinates, curvature K is given by

K = Y"

Y12 = [al] 2 [=ar 2 12 2

.. 2 - 2
y = -= ctnc 2

ctn 2 9Z 2 ctn3 2Z/ 2-ctn 3 %/2

y(l+ ctnZ WV2) 3 /  p(1+ ctnza/2)3/ 2 =  p csc 3 cV2

K= - cos 3  2
p

The radius of curvature rc is given by the reciprocal of the curvature and

therefore

rc = -2f sec3 a/2.

The negative sign denotes a concave downward curve, but only the magnitude

of the radius of curvature need be considered here.
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Appendix 2
ASTIGMATIC IMAGE EQUATIONS

Sagttal Image Position

p 
-CIRCLE

TANGENT No

/A 0 N\ CN

$ NRMAL

Figure 2-1 Sagittal Image Formation

Let N be a point on the sagittal focus corresponding to incident light along

the path MP. The points M, N, 0, and A form an harmonic division and there-

fore

1 +  1 2

K MAN X W

Projection of the distances AM, AN, and AC on the normal yields

1 1 2

PV' PVN P~

Now, PM' PM cos i and PNI = PN cos L.

Therefore

1 1 2cosiT V+ TY= -- -- *

Denoting PM and PN as the object and image distances, respectively, one

can easily see that PC is the radius of curvature of the curve at point P.

Tangential Image *Position
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In the triangle CPM,l 
= 6' + I; and in the triangle

CPN, co 0' -1. Therefore

dO2co 0 + 6

0and differentiating yields

2dm = dO + de'.

Now, with PC as a radius,
CIRCLE construct an arc such that

PPI = PCdo). With PM as
a radius, construct the arc

Figure 2-2 Tangential Image Formation

PQ = PMde and since angle QPP' = angle I, then PQ = PP'cos i, and therefore
PMde = PPIcos I.

With PT as a radius, construct the arc PQ', and as before, PT dOl = PP'

cos I, since angle Q'PP' = angle i.
Substituting for da, dO , and dG' yields

2pp' pp' P

2--= P cos i + cos i

or

2 1 1

Pu co-Si M+7

If PM and PT are the object and images, respectively, PC will be the radius

of curvature of the curve at point P.
It should be noted that the line NN', the sagittal focal position locus, is per-

pendicular to the line going through the point T into the paper. This latter line

is the locus of the tangential focal positions.

The derivations of the sagittal and tangential image position equations assumed

a spherical mirror as the reflecting surface.
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Appendix 3
SAGITTAL AND TANGENTIAL CURVATURES

PARABOLA, P i2foI +Cos a

pM
MAL

TANGENT2 A a
CAXIS

~~ C T

Figure 3-1 Radii of Curvature for Paraboloid

The above construction on the parabola at any point P yields:

PA= p seecV 2 ;PCT= 2p sec q/2

CA= ptanV 2 ;DCT= 2p tanq/2

ACS AB = tan a2 Cos a=si q/ 2= sin q/ 2 =P c "--T-

Therefore, the tangential radius of curvature rT is given by

rT = PCT= 2fsec3 / 2.

The sagittal radius of curvature r. is given by

r.= PA+ ACa= p secV 2 + p cos asecq12

rs = 2f sec q/2.
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Appendix 4
HORIZONTAL OPTICAL PATH IN "CLAM SHELL"

Figure 4-1 Internal Optical Path for "Clam Shell"

In calculating the horizontal distance d between the mirrors at points P1

and P2. the equations of the parabolas are given in Cartesian coordinates. P 1

lies on curve y2 = -4fx and P 2 lies on y2 = 4fx + Vf2.

d = xi - x2

= yT 14 f] = f - 1/2.

The equation of the line FP I is

y= - xtana-ftana.

At PI y 2 = -4fx; therefore substituting for x from the equation of FP1 yields

y 2 _4fyctna-4f 2 = 0

or

y = 2f ctna(1 t sec a)

Due to the construction of the "clam shell" tan a 2Y-Yand sec a 1.
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Therefore

y= 2f ctna(l - sec a).

Therefore, solving for d gives

Vf2 2 I  2(1 - sec a) 2

d= f - (1- seca) = i f1 - 2
2f tan a tan a

which may be reduced to

d= fsea+ I- "

It is interesting to note that when a = 0, then d = f which is the distance between

vertices of the mirrors. Also, when a is maximum or tan a = 2 2 and sec a = 3,

then d = 0 as it does when the mirrors are together.

The total light path from focal point to focal point in the "clam shell" is 2 p + d

which equals 3f. In computing this distance, only magnitudes are of importance

and therefore the total distance dT is given by

d 2 2f + 4V f
dT= 2 1 cos a + se a+ 1

4R + V cos a -f=3
= 1+ cosa+- -+-cos a

From the geometry of the "clam shell," it can easily be seen that for light

incident at the maximum angle, tan a = 2 4, that p = 3/2 f and d = 0. There-

fore dT = 3f.
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Appendix 5
DERIVATION OF THE SYSTEM EQUATION

1 1 1

+ (1)f sec 2cq/2

1 1 1

' 2  V2  f sec q/ 2

u* = u+ p (3)

where

2f f sec 2 a/2
S= 1+ cos a

(4)
U2 = (v' - d)

where

d = 3f- 2p

v= P-v 2

Solving for v0 in terms of u, using Eqs. (1) and (3) yields

1 1
Vfsec2 cV 2 u (5)

V= (u+ p) f sec 2 a/Z (u+ OP(
u+ p -f sec a/2 u (6)

Solving for v2 interms of v', using Eqs. (2) and (4) yields

1 1 -1v2 fsec 2 a/ 2 -
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and (7)

d) p
V2 I--- -d+ p

Eliminating v" from Eqs. (5) and (7) yields

3up 2 + p3 _ 3fpuv2 - 7 - (8)4 up + p - 3fu

Using Eq. (5) and solving for v in terms of u yields

V p -3up 2+ p3 - 3fou

4up + p - 3fu

_ 4up 2 + p3 - 3fpu - 3up 2  p3+ 3f u
4up + p 3fu

4up + p -3fu

_ f2 sec4 q/2 (9)

4uf sec 2 al2 + f2 sec4 a/2 - 3fu

Therefore

4f (10)f+u(4 cos 2 q/2-3 cos 4 /2 

or

1 1 4cos2  2- 3cos 4 / 2
v u
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Appendix 6

TABLE A. Calculations for Curvature of Field

2 0.20O. 333ff.. 7 1. 00f . 00f 13 00f 0 o
30. 375f 3.4291 0.500f 0.600f 0.667f 0.692f 0.705f 0. 750f

5/2 0. 342f 0. 395f 0. 469f 0. 578f 0. 660f1 0.684f 0.699f 0. 752f
11/5 0. 318f 0. 372f1 0. 458f10. 563f1 0. 646f 0. 678f 0. 696f 0. 756f

2 D.302f 0. 356f '0. 432f! 0. 552f10.6401 0.675f 0.695f 0. 762f
13/7 0. 289f 0. 343f110. 420f 0. 543f0. 636! 0. 675f1.0. 696f 0. 768f

5/3 0. 272f 0.385f 0.403f 0.532f10. 632f 0. 675f1 0. 695f 0. 781f
3/2 0. 2551 0. 308f10. 387f 0. 522f10. 632f 0. 678f 0.706f 0.800f

'7/5 0. 245f 0. 297f10. 377f110 5161 0.*632f 0.684f 0.712f 0. 817f
9/7 0. 2411 0. 284f 10.364f110'509f 0. 6361 0. 692f 0. 734f 0. 844f

11/9 10.226f 0. 277f 10. 3581 10. 506f 0. 638f1 0. 699f1 0. 734f 10.8641l
12/11 10: 2101 0. 261f1 0. 343f-0. 5011 0 I510.21 764 1098

1 0. 2001i~ 0.5f 333f 0. 500f 0.667[ 0.750f 0.800f 1. 000f I

1 1=4 cos 2 q/2-3cs4 a

The locus of the object distance u is a straight line perpendicular to the axis.

The on-axis projection of u is u0and therefore u = u 0 sec (. (See Figure 4.)

TABLE B. Calculations for Spherical Fields

se . sa\ .2501 0. 333f '0. 5001 1.001f 2.00f1 3. 00f 4. 00f I a
3 0. 187f1 0. 231f1 0. 300f 0. 428f 0. 545f 0. 6001 0. 6321 0. 7501

5/2 0.*187f 0. 231f 0. 300f 0. 429f 0. 546f 0. 601f 0. 633f 0. 752f
11/5 0. 1881 0. 2311 0. 3011 0. 4301 0. 549f 0. 6041 0. 636f 0. 7561

2 0. 188f 0. 232f 0. 302f 0. 432f 0. 552f 0. 607f 0. 640f 0. 762f
13/7 0. 1891 0. 232f 0. 303f :0. 434f 0. 5551 0. 612f 0. 645i 0. 7681

5/3 0.1891Of.234f 0. 305f1 0. 438f 0. 562f 0. 6191 0. 6531 0. 7811
3/2 0. 1901 0. 235f 0.308f 0.444f 0.571f 0. 632f 0.666f 0.800f

7/5 0. 191f 0O.2371 0.310f1 0.449f 0.5791 0.641110.678f 0. 8171l
9/7 0. 193f1 0. 239f 0.314f 10. 457f10 0593f10 650f 0. 696f 0. 844f1

S 11/91 0.19141 0*2411 0. 3171 10. 463-, 0.603f 0.670f 0.712f 0. 8641l
12/11 0.197f10,o.245f 0. 3251 10.481 0.31 0.7051 0.7531 0. 9281l

1 0. 2001 !0. 250f10. 3331 0O. 5001~f 10. 7501t~ "(0. 8001 1. 000!,

1 1 4 cos 2 a/ 2- 3cos 4 q/2
v u f

The locus of the object distance u is a circle. Therefore the table shows the

variation il tile image position with angle as u held constant.
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